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Abstract

Primary immunodeficiency diseases (PIDs) are a rapidly growing, hetero-
geneous group of genetically determined diseases characterized by defects
in the immune system. While individually rare, collectively PIDs affect be-
tween 1/1,000 and 1/5,000 people worldwide. The clinical manifestations
of PIDs vary from susceptibility to infections to autoimmunity and bone
marrow failure. Our understanding of the human immune response has
advanced by investigation and discovery of genetic mechanisms of PIDs.
Studying patients with isolated genetic variants in proteins that participate
in complex signaling pathways has led to an enhanced understanding of host
response to infection, and mechanisms of autoimmunity and autoinflamma-
tion. Identifying genetic mechanisms of PIDs not only furthers immunolog-
ical knowledge but also benefits patients by dictating targeted therapies or
hematopoietic stem cell transplantation. Here, we highlight several of these
areas in the field of primary immunodeficiency, with a focus on the most
recent advances.
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OVERVIEW OF MONOGENIC PRIMARY IMMUNODEFICIENCIES

There are over 450 disorders/gene defects leading to inborn errors of immunity, and this list
continues to grow annually (1) (Figure 1). The advent of the primary immunodeficiency field is
often credited to a 1952 publication from Colonel Ogden Bruton (2) describing a young male
patient with recurrent severe infections, absent gamma globulins, and normal total protein. As a
proof of concept, the patient was given monthly injections of gamma globulin. He demonstrated
marked improvement, with no further episodes of sepsis in the observed period. This disease was
later recognized as X-linked agammaglobulinemia (XLA) due to deficiency of Bruton tyrosine
kinase (BTK). Genetic discovery of the BTK gene was not achieved until 1993, by using posi-
tional cloning (3) and by investigating B cell-specific tyrosine kinases (4). Prior to this, patients
with features of primary immunodeficiency had been reported, including patients with ataxia-
telangiectasia in 1926 (5) and Wiskott-Aldrich syndrome in 1937 (6). By the 1950s, in addition to
XLA, other recognized disorders of the immune system included congenital neutropenia (7), fa-
milial hemophagocytosis syndrome (8), X-linked chronic granulomatous disease (CGD) (9), and
severe combined immunodeficiency (SCID) (10, 11). However, genetic determinants for many
of these conditions were not identified until decades later. For example, cells from patients with
CGD were initially noted to have a functional defect in the intracellular killing of organisms and
a defective NADPH oxidase system. The genetic defect in CYBB was defined years later, by using
positional chromosomal mapping and by identifying a unique RNA transcript that was elicited
by subtracting patient RNA from normal RNA (12, 13). The first finding of a genetic determi-
nant of one form of SCID, which comprises disorders characterized by severe T cell defects, was a
serendipitous discovery of adenosine deaminase deficiency in two patients with immunodeficiency
(14). About 20 years later, linkage mapping identified variants in the common gamma chain cy-
tokine receptor as genetic determinants of X-linked SCID (15, 16).

Classically, autosomal recessive (AR) and X-linked recessive inheritance patterns have been
observed in PIDs. Over time, additional disorders with dominant inheritance patterns and even
somatic or mosaic patterns have been identified. The International Union of Immunological
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Figure 1

Total number of known monogenic primary immunodeficiency diseases (PIDs) with an underlying
monogenic cause tabulated by year of first publication. The list of monogenic PIDs was extracted from the
most recent update (December 2019) to the 2019 International Union of Immunological Societies Inborn
Errors of Immunity Committee report (1; updated from https://iuis.org/committees/iei/).
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Societies (IUIS) Inborn Errors of Immunity Committee publishes a report biannually to depict
advances in the field, dividing diseases based on the predominant phenotype (1, 17). In the
most recent classification, there are nine groups identified, with the tenth table representing
phenocopies of PIDs. The broad clinical heterogeneity of these classifications reflects the diverse
functions of the immune response and the consequences of perturbations, from severe infections
associated with complete T cell deficiencies to autoinflammation seen with alterations of the type
I interferon system to bone marrow failure syndromes.

Importantly, fundamental principles in immunology have been advanced by studying patients.
A now classic example of this are deleterious variants in the FOXP3 gene leading to immune dys-
regulation, polyendocrinopathy, enteropathy, X-linked (IPEX) syndrome. This rare hemizygous
disorder typically presents in early infancy and is characterized by enteropathy, dermatitis, type 1
diabetes mellitus, hypoparathyroidism, and cytopenias. IPEX syndrome was first described clini-
cally in 1982 in a large kindred of males with diarrhea, endocrinopathies, autoimmune hemolytic
anemia, dermatitis, and infection as well as autoimmunity (18). About 20 years prior to the initial
description of IPEX syndrome, the mutant mouse strain referred to as scurfy was identified (19).
Mice develop scaly skin, splenomegaly, and lymphadenopathy and die prematurely at about three
weeks of age. Linkage analysis localized the genetic defect to Xp11.23-Xq13.3 (20, 21). It was
not long thereafter that positional cloning identified Foxp3 as the gene responsible for the scurfy
syndrome in mice (22), with subsequent recognition of FOXP3 as the gene responsible for IPEX
syndrome (23-25). Shortly after that, Foxp3 was determined to be the master transcription factor
defining CD4*CD25" regulatory T cells (Tregs) (26-28). Studying pathogenic variants of FOXP3
found in patients has been informative in discerning the importance of the structural domains of
the protein.

The discovery of patients with a genetic deficiency of the autoimmune regulator (AIRE)
protein also illustrates how studying patients can help advance immunological knowledge. Au-
toimmune polyglandular syndrome type 1 (APS-1/APECED) is an autosomal recessive disorder
caused by biallelic loss-of-function (LOF) and, more recently discovered, heterozygous dominant-
negative (DN) variants in AIRE. The classical phenotypic triad is hypoparathyroidism, adrenal
insufficiency, and chronic mucocutaneous candidiasis; additionally, a wide range of organ-specific
autoimmunity to both endocrine and nonendocrine organs is observed (29). The disorder was ini-
tially described in a small series of reports in 1929 and 1943 by astute clinicians who recognized
the clinical patterns in large families (30). The genetic determinant was discovered in 1997, when
positional cloning narrowed the location of the causative gene to the region encoding the protein
now known as AIRE (31, 32). The discovery of this genetic defect in patients, and the subsequent
engineering of a mouse strain with an Aire gene mutation, led to enhanced understanding of the
role of central tolerance and expression of peripheral tissue-specific transcripts in the thymus to
prevent autoimmunity (30, 33). Benoist, Mathis, and colleagues (34) demonstrated that the AIRE
protein is predominantly expressed in medullary thymic epithelial cells, underpinning the critical
link between AIRE and ectopic expression of peripheral antigens during thymic education of T
lymphocytes.

Interestingly, for both IPEX syndrome and APECED, the spectrum of disease present in indi-
vidual patients can vary considerably, even in patients with identical genetic variants (30, 35, 36).
Diversity in the genotype-phenotype continuum is not uncommon in PIDs, and in some instances
it underpins the extent of immune deficiency or autoimmunity present.

Here, we focus on advances in our understanding of genetic mechanisms of PIDs and high-
light recent studies of immunologic lessons from investigating molecular mechanisms of PIDs.
We concentrate on groups of disorders that have rapidly grown based on genetic discoveries,
including the unique human immune responses to viral infection, type I interferonopathies,
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Genetic inheritance of primary immunodeficiency diseases (PIDs). (z) PIDs affect a wide range of immune cell functions and can be
classified into nine categories. (b)) Multiple mechanisms of inheritance account for disease (1; updated from https://iuis.org/
committees/iei/). (c) Other genetic mechanisms of PIDs include somatic mutations not present in the germ line of the patients’
parents, which can occur in gametes, during embryogenesis, and beyond. Images on the right adapted from Servier Medical Art
(https://smart.servier.com), provided by Les Laboratoires Servier. They are available for reuse under the CC-BY 3.0 Unported
license (https://creativecommons.org/licenses/by/3.0/legalcode).
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autoinflammatory disorders, and primary immune regulatory disorders (PIRDs). Finally, under-
standing the genetic mechanisms of PIDs not only provides us with a better understanding of the
human immune response but also is essential for advancing both the clinical care of these patients
and the development of new functional diagnostics.

GENETIC MECHANISMS OF PRIMARY IMMUNODEFICIENCY
DISEASES

PIDs are a diverse group of genetic disorders of the immune system (1; updated list at
https://iuis.org/committees/iei/) (Figure 2). Most PIDs are inherited in an AR manner. Au-
tosomal dominant (AD) disorders are the next-largest category, followed by X-linked disorders
and sporadic disorders, or those with unknown genetic inheritance. While most AR PIDs are due
to LOF, AD diseases result from several interesting and immunologically complex mechanisms in-
cluding gain-of-function (GOF), haploinsufficiency, or dominant-negative effects on the encoded
protein. Interestingly, for a few PIDs either one or two affected alleles (AD or AR) can cause sim-
ilar disease, for example APECED (AIRE) and TREX1-associated autoinflammatory syndrome.
There are also several examples of diseases caused by pathogenic variants in the same gene; for

Schmitt » Cooper


https://iuis.org/committees/iei/
https://smart.servier.com
https://creativecommons.org/licenses/by/3.0/legalcode
https://iuis.org/committees/iei/

Annu. Rev. Immunol. 2021.39:227-249. Downloaded from www.annualreviews.org

Access provided by 159.14.230.1 on 07/12/23. For personal use only.

example, at least three clinical phenotypes have been described with CARD11, including SCID-
like disease (AR LOF), antibody deficiency and lymphoproliferation (AD GOF), and atopy with
infections (AD LOE, including dominant-negative) (37).

Genetic changes causing PIDs include single-nucleotide variants and structural variants such
as nucleotide insertions or deletions of varying sizes and copy number variants, the vast majority
of which are rare in the population databases (<0.01% allele frequency). There is also emerg-
ing evidence that some cases of PIDs thought to be sporadic may be due to interactions be-
tween more common susceptibility variants and rare variants, as demonstrated in a recent study of
>1,000 patients, most of whom had adult-onset and/or sporadic disease (38). PIDs can also result
from somatic mutations that arise either in the patient or potentially in the gamete of the parent
(Figure 2). For example, somatic FAS variants cause autoimmune lymphoproliferative syndrome
(ALPS) phenotypically similar to germ line disease (39). Mosaic variants in the NRLP3 gene cause
neonatal-onset multisystem inflammatory disorder (NOMID) in children with clinical symptoms
similar to germ line disease (40, 41). The overall number of patients with PIDs due to postzy-
gotic somatic mosaicism is thought to be relatively low based on rare case reports in the literature.
However, a recent study evaluated PID genes in 128 families suspected to have mosaicism (ei-
ther somatic or gonadal/inherited), looking for AD or X-linked disease (42). Approximately 25%
of families had mosaic disease, with 60% of those patients having somatic mosaicism. Disease-
causing mosaic variants of NLRP3, FAS, and NOD2 were identified (42). These data suggest that
somatic mosaicism may be an overlooked cause of PIDs. This diversity in genetic mechanisms of
PIDs highlights the complexity of the human immune response and the ways in which diseases
arise and disrupt the normal immune response.

IMMUNOLOGIC LESSONS FROM NATURE

Complementary studies of patients with genetically defined PIDs and animal models have pro-
vided insight into the complexity and function of the human immune system. The field of primary
immunodeficiency is a natural wedded effort between medicine and science and effortlessly flows
from bedside to bench and back. Here, we focus on four major insights into the human immune
response, including discussion of areas where animal models have both aided and potentially hin-
dered our understanding of immunological processes.

Host Response to Viral Infection

The specificity of infectious susceptibility in PIDs can serve to educate on the differences between
human and animal immunity. For example, there are differences in immunologic requirements
for control of viral infection. Adequate control of viral infections initially relies on innate immune
responses to limit viral replication and spread. Host cells possess pattern recognition receptors
(PRRs), such as Toll-like receptors (TLRs), responsible for the recognition of certain viral RNA
or DNA features. The activation of PRRs leads to downstream signaling cascades and the produc-
tion of type I/III interferons critical for antiviral responses (Figure 3). Type I interferons bind to
IFN-a/B receptors 1 and 2 IFNARI, IFNAR?2). Receptor-associated Janus kinase 1 (JAK1) and
tyrosine kinase 2 (TYK2) are then activated and phosphorylate the transcription factors signal
transducer and activator of transcription 1 (STAT'1) and STAT?2, leading to the association with
interferon regulatory factor 9 (IRF9) to form the interferon-stimulated gene factor 3 (ISGF3)
complex. This complex binds interferon-stimulated regulatory elements (ISREs) in the promot-
ers of both interferons and interferon-stimulated genes (ISGs) (43). IRF7 is induced by type I
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Figure 3

Simplified schematic of IFN-I signaling. PRRs on host cells sense stimuli; for example, the endosome-
associated TLR3 recognizes dsRNA. Ultimately, signaling cascades converge on the activation of IRF3
and/or IRF7, which translocate to the nucleus, bind ISREs, and induce transcription of IFN-I. IFN-o/8 bind
to IFNARs, leading to IFNAR1 and IFNAR?2 dimerization. Next, receptor-associated JAK1 and TYK2 are
activated and lead to the phosphorylation and activation of STAT?2 and STAT1. The activated STAT'1 and
STAT?2 form a complex with IRF9 known as the ISGF3 complex, which translocates to the nucleus to bind
ISREs and dictate transcription of ISGs. USP18 assists in downregulation of IFN-I signaling and is
stabilized by ISG15. Selected variants leading to disrupted IFN-I signaling are discussed in the text.
Abbreviations: dsRNA, double-stranded RNA; IFNAR, interferon receptor; IFN-I, type I interferon; IRE,
interferon regulatory factor; ISG, IFN-stimulated gene; ISGF3, interferon-stimulated gene factor 3; ISRE,
interferon-stimulated regulatory element; JAK1, Janus kinase 1; PRR, pattern recognition receptor; STAT,
signal transducer and activator of transcription; TLR, Toll-like receptor; TYK2, tyrosine kinase 2; USP18,
ubiquitin-specific peptidase 18.

interferons and participates in a positive-feedback loop and the amplification of type I/III inter-
feron responses in mice and humans (44).

Patients with genetic defects that impair IFN-a/f signaling have difficulties controlling viral
infections. Although these variants occur in a common pathway, the patterns of disease suscep-
tibility observed in affected patients with monogenic PIDs vary. Severe influenza pneumonitis
has been observed in patients with AD GATA2 deficiency, AR IRF7 deficiency, and AR IRF9
deficiency (45-47). GATA2-deficient patients are susceptible to severe pulmonary influenza, yet
several other infections are commonly reported, including infections of nontuberculous mycobac-
teria, viruses such as Epstein-Barr virus and human papillomavirus, and fungi. GATA2-deficient
patients have deficiencies in natural killer cells, monocytes, B cells, and dendritic cells, and in
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particular, plasmacytoid dendritic cells, which may contribute to the enhanced susceptibility to
multiple infections, including severe influenza infection (44). In contrast, patients with IRF7 defi-
ciency have a very narrow spectrum of disease susceptibility seemingly limited to severe influenza.
The patient in the initial description of IRF7 deficiency was seropositive for several viruses, in-
cluding human cytomegalovirus; varicella zoster virus; adenovirus; and other respiratory viruses
such as respiratory syncytial virus (RSV) and parainfluenza viruses 1, 2, and 3, indicating expo-
sure without severe illness. This suggests that in humans, IRF7 may be redundant in host defense
against many other viruses (46). Conversely, in mice, IRF7 may serve a more extensive role in
antiviral immunity, as I7f7-deficient mice are susceptible to multiple RNA and DNA viruses (48).

Patients deficient in IRF9 are unable to form functional ISGF3 complexes. This results in
impaired responses to type I interferons and restricted induction of ISGs following interferon
stimulation. In the initial report of this PID, a patient with severe pulmonary influenza had a
homozygous variant in IRF9 located in an essential splice site, resulting in LOF due to a mutant
transcript and truncated IRF9 protein lacking exon 7 (47). The mutation had a negative impact on
the interaction of IRF9 with STAT proteins via the IRF association domain. This patient suffered
from other infectious complications requiring a separate hospitalization for RSV, recurrent fevers,
recurrent uneventful bronchiolitis, and biliary perforation following measles, mumps, and rubella
(MMR) vaccination. In vitro, cells from this IRF9-deficient patient were more susceptible to sev-
eral viruses, including influenza A virus, vesicular stomatitis virus, RSV, and parainfluenza virus
(47). However, the most striking clinical finding was severe influenza infection. In a subsequent
report, a family with IRF9 deficiency had difficulty controlling several different viral infections,
with multiple prolonged and severe illnesses. This second variant led to a complete loss of protein
expression and absent ISG expression, which may account for differences in the observed pheno-
types (49). Again, the level of residual IRF9 activity and the subsequent ability to induce an appro-
priate complement of ISG expression may vary based on the genetic variant identified. Certainly,
there are some caveats in this comparison, as different experimental cells were studied, and studies
with larger cohorts are needed. Data in mice also support the notion that IRF9 is an important
mediator of the antiviral interferon response to a wide range of viral infections. Mice deficient in
IRF9 have impaired control of viral replication after infection with lymphocytic choriomeningitis
virus, and instead of resolving an acute infection, they develop a chronic infection characterized
by CD8" T cell exhaustion (50). Patients harboring deleterious variants of other genes in this
pathway, such as STAT1, STAT2, }JAK1, TYK2, and IFNAR?2, despite having an increased suscepti-
bility to severe viral infections, have not been reported to suffer from severe pulmonary influenza
(51-55). In addition, many other PIDs are characterized by recurrent or severe viral infections,
but an increased susceptibility to severe influenza infections has not been documented in the ma-
jority of these disorders. Overall, identifying monogenic variants in patients with severe influenza
has helped establish the importance of the IRF9- and ISGF3-dependent type I/III interferon re-
sponses in the control of influenza in humans. Even with these observations, care must be taken in
the interpretation of the infectious susceptibility, as only a handful of patients have been reported
thus far.

TLRs represent another area of innate immune responses where data from patients have
provided insight into unique or altered responses in human immunology. TLRs are germ line—
encoded receptors designed to recognize a diverse array of microbial structures. PIDs have thus
far been identified in one TLR gene (TLR3) and several signaling molecules. TLR3 recognizes
dsRNA and activates IRF3 and NF-«B to elicit antiviral type I and type III interferon responses.
Intriguingly, pathogenic variants of TLR3 and the TLR3 signaling pathway predispose patients to
herpes simplex virus 1 (HSV-1) encephalitis, an infection that is typically associated with gingivos-
tomatitis (56). Variants of genes encoding other proteins in this pathway, including UNC93Bl,
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TRIF, TRAF3, TBKI, and IRF3, also result in disease (57-59). More recently, two heterozygous
missense LOF variants of TLR3 were identified. The variants were associated with AD TLR3
deficiency, characterized by a defect in pulmonary epithelial cell-intrinsic immunity to influenza
virus (60). These observations are distinct with regards to infectious outcomes compared to ob-
servations in TLR3-deficient mice, which have varying responses to viruses ranging from reduced
survival to impaired virus control to improved survival with influenza despite increased viral titers
in the lung (57). Indeed, there is likely redundancy in the TLR3 pathway for human immunity,
with relatively exclusive reliance on TLR3 for host defense to HSV-1 in the central nervous system
and pulmonary influenza.

Together, investigations of the genetic etiology of susceptibility to viral infection in patients
have led to the discovery of significant redundancy that could not have been predicted from studies
in model organisms.

Autoinflammatory Disorders

Autoinflammatory disorders are monogenic disorders caused primarily by a dysregulated innate
immune response and are differentiated from autoimmune disease by the relative lack of autoanti-
bodies or antigen-specific T cells. These disorders have been clustered based on common underly-
ing mechanisms; such clusters include inflammasomopathies with dysregulated IL-1p activation,
interferonopathies, and disorders with abnormalities in protein folding. Classically, autoinflam-
matory disorders were a group of disorders defined by the monogenic periodic fever syndromes,
including familial Mediterranean fever, but they have expanded to encompass a larger group with
underlying innate immune system pathology (61).

Unchecked interferon responses: interferonopathies. Although type I interferons serve a crit-
ical role in antiviral immunity, left dysregulated, type I interferons can lead to autoimmunity and
immunopathology. PRR-mediated activation of ubiquitin E3 ligases and kinases leads to the ac-
tivation of latent transcription factors and ultimately induction of expression of type I interferon
genes and other proinflammatory cytokines, which modulate the innate and adaptive immune
responses. Type I interferonopathies are a group of autoinflammatory disorders characterized by
upregulation of type Iinterferon signaling, including upregulation of ISGs (62). Aicardi-Goutiéres
syndrome (AGS) is an autoinflammatory disorder exemplified by inflammation of the brain and
skin, and patients have increased levels of IFN-a in the cerebrospinal fluid and serum. The recog-
nized clinical spectrum of the syndrome has expanded and includes chilblains, glaucoma, hypothy-
roidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation, and
systemic lupus erythematosus (63). Infectious complications are not commonly noted in AGS pa-
tients and are not a prominent feature in patients with type I interferonopathies. Genetic vari-
ants leading to AGS are heterogeneous, including variants of TREX1, RNASEH2A, RNASEH?2B,
RNASEH2C, SAMHDI, ADARI, IFIHI, and DNASE?2. The disorder is caused by aberrant ac-
tivation of nucleic acid receptors, from either a GOF in a signaling molecule that activates the
type I interferon response or a LOF in key negative regulators of the system (64). It is note-
worthy that variants in individual genes lead to a spectrum of clinical phenotypes and disease
severity, and such variability is also observed among family members harboring the same variant.
Mice deficient in TrexI develop lethal autoimmunity, and the fundamental role of type I inter-
ferons in pathogenesis was corroborated by the observation that TrexI ™'~ Ifnar]™'~ mice were
protected. An interferon-independent component may coexist in these patients, as TrexI ™'~ mice
do not develop neuroinflammation, a key feature of AGS (65). Furthermore, mice with Adarl mu-
tations were not rescued by crossing the mice onto the Ifnar1~'~ background (66). Treatment with
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baricitinib, a Jak1/2 inhibitor, improved clinical manifestations, reduced the need for glucocorti-
coids, and suppressed the interferon signature in patients with interferonopathies (67). Patients
with autoimmune conditions such as systemic lupus erythematosus also have elevated ISGs (68),
suggesting immunopathogenic overlap between these syndromes. Analysis of type I interferon—
response genes and concurrent measurement of proinflammatory cytokines in patients with un-
differentiated systemic autoinflammatory diseases may aid in the diagnosis, classification, and
treatment of these patients by differentiating canonical interferonopathies from conditions with
chronic versus transient ISG elevation (69).

Additional evidence for the pathogenicity of type I interferons in humans came with the de-
scription of siblings with a homozygous missense variant of STAT2 leading to GOF (70). In this
case, the siblings suffered from episodes of marked neuroinflammation and systemic inflammation,
with elevated ISGs. This variant was silent in the heterozygous state (unaffected parents), which
contrasts with the AD pattern recognized in STAT1 and STAT3 GOF disease. In the homozy-
gous state, there is increased IFNAR signaling, demonstrated by prolonged JAK/STAT signaling
and transcriptional activation, secondary to loss of STAT?2 regulatory activity. The variant hinders
the interaction of STAT?2 with ubiquitin-specific peptidase 18 (USP18), an important STAT2-
dependent negative regulator of IFN-a/p signaling. USP18 regulates desensitization through dis-
placement of JAK1 from the IFNAR?2 receptor subunit, supported by STAT2, which functions as
an adaptor protein (Figure 3). The interaction of STAT?2 with USP18 was localized to the coiled-
coil domain of STAT?. Similarly, in one report, patients with USP18 deficiency had a compara-
ble phenotype, thought to be due to a loss of negative feedback on IFNAR (71). Another defect
noted in this spectrum is in ISG15, a protein that promotes USP18 stability. Patients with ISG15
deficiency fall on the milder end of the spectrum, demonstrating intracranial calcification and in-
creased expression of ISGs, but they lack severe viral infections and have enhanced susceptibility to
mycobacterial disease (72, 73). By contract, mice with ISG15 deficiency have a broad susceptibility
to viral infections (74). LOF variants of STAT? are associated with increased susceptibility to viral
infections due to the loss of the transcription factor complex ISGF3 (52) (Figure 4). Therefore, in
humans, STAT?2 participates in the regulation, both positively and negatively, of its own signaling
pathway. In summary, excessive activation of the type I interferon response pathway or inadequate
downregulation of these responses underlies the etiopathogenesis of the interferonopathies. With
regard to type I interferon responses, balance is essential, as PIDs have been identified that are
characterized by both defective and excessive innate immune signaling.

Other autoinflammatory disorders. Autoinflammatory disorders have expanded due to rapid
advances in genetic sequencing and now include diseases with several unique mechanisms under-
lying the clinically apparent autoinflammation. Here, we discuss the characteristics of four of these
disorders.

Adenosine deaminase type 2 (ADA2) deficiency is an autoinflammatory disorder known as de-
ficiency of ADA2 (DADA?2) and is caused by AR variants of ADA2 (CECRI). Initial publications
documented pathogenic variants of this gene leading to early-onset systemic vasculitis and stroke
(75, 76). Recently the clinical spectrum of disease phenotypes has rapidly grown, and additional
hematologic and immunologic manifestations have been described. Hematologic manifestations
include cytopenias such as pure red cell aplasia (PRCA) that mimics Diamond-Blackfan ane-
mia, bone marrow failure (BMF), and lymphoproliferation. Immunodeficiency and autoimmune
features are also variably present, including mild hypogammaglobulinemia, recurrent infection,
autoimmune cytopenias, and systemic lupus. Recurrent and severe infection tend to be seen in
the patients with BMFE. Time of disease onset varies but is typically in childhood, with most pa-
tients presenting before ten years of age and the patients with PRCA presenting in infancy (77).
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Figure 4

Monogenic primary immunodeficiencies of the JAK/STAT pathway. (D) Ligands, such as cytokines,
hormones, and colony-stimulating factors, engage receptors, leading to () activation and phosphorylation
of the JAK family of nonreceptor tyrosine kinases and phosphorylation of the intracellular tail of the receptor.
The four JAKs (JAKI, JAK2, JAK3, TYK?2) selectively bind to specific receptor chains. (3)) STATS then bind
to the cytoplasmic domain of the receptor and are subsequently phosphorylated and activated, allowing for
dimerization and translocation to the nucleus to regulate gene expression. LOF variants (red arrows) and
GOF variants (blue arrows) leading to primary immunodeficiency diseases are depicted in the illustration.
‘White boxes denote the phenotypes observed in patients harboring the assorted variants. Abbreviations: AD,
autosomal dominant; AR, autosomal recessive; CMC, chronic mucocutaneous candidiasis; DN, dominant
negative; GOEF, gain of function; HSM, hepatosplenomegaly; HSV, herpes simplex virus; JAK, Janus kinase;
LOFE, loss of function; STAT, signal transducer and activator of transcription; TYK, tyrosine kinase.

ADA? is highly expressed in myeloid cells and serves a nonredundant function in humans, as
its deaminase activity does not compensate for a loss of ADAI function in patients that develop
SCID. Mice lack an ortholog to ADA2, and the in vivo function of ADA2 in humans remains yet
to be fully elucidated, though studies have hinted at a role in immune response regulation and
differentiation, particularly at sites of inflammation (78). A genotype-phenotype association in
DADA2 was recently defined based on the level of residual ADA2 enzymatic activity and may have
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implications for treatment responsiveness and clinical management (79). In addition, a type I in-
terferon signature has been variably observed in some patients, but larger cohorts are needed to
establish a correlation with disease activity (80, 81).

Deficiency of the interleukin-1 receptor antagonist (DIRA) is an autoinflammatory disorder
characterized by sterile inflammation of the skin and bones and is due to recessive variants of
ILIRN, which encodes IL-1 receptor antagonist (IL-1Ra). Under normal circumstances, IL-1Ra
binds with high affinity to IL-1R1. However, binding of IL-1Ra does not result in the receptor
conformational change seen with agonists and fails to recruit the intracellular IL-1 receptor ac-
cessory protein, which is required for signal transduction. In patients lacking IL-1Ra, the binding
of IL-1a and IL-1B to the IL-1 receptor continues unconstrained. As a result, patients present at
birth, or shortly thereafter, with severe systemic inflammation and skeletal abnormalities includ-
ing multifocal osteomyelitis, periostitis, arthritis, and pustular skin lesions (82, 83). High levels
of inflammatory cytokines including IL-18, IL-6, IL-8, and TNF-a are produced by patient pe-
ripheral blood mononuclear cells, and production is further accentuated when cells are stimulated
with lipopolysaccharide (LPS). Patients have a prompt and dramatic response to treatment with
recombinant IL-1Ra. Interestingly, the phenotype of the I/Irn-deficient mouse lacking IL-1Ra
protein is distinct from that of patients. The original mouse model created on the mixed back-
ground (C57BL/6] x 129/Sv) had a modest phenotype with lower body weights and reduced
survival after LPS administration, but it had improved survival after Listeria monocytogenes chal-
lenge (84). Breeding the mice onto a different background (BALB/cA) led to the development of a
chronic inflammatory arthritis resembling rheumatoid arthritis (85). However, mice first demon-
strated signs of arthritis at five weeks of age, and >80% had arthritis by eight weeks of age. This is
in contrast to patients with DIRA, who have symptoms around the time of birth. Arterial inflam-
mation and psoriasis-like skin inflammation have been noted on different genetic backgrounds
as well, reinforcing the notion that disease susceptibility in the animal model likely depends on
underlying genetic loci that modify the phenotype (86, 87). In humans, the disease has been docu-
mented in patients from multiple continents and of different genetic backgrounds, but the disease
severity and phenotype are preserved. In addition, the disease is sometimes present at the time
of birth, and there is also evidence of in utero inflammation (88), suggesting that baseline IL-1R
signaling requires exquisite control in humans. Thus, in this case, genetic investigation of disease
in children led to targeted life-saving therapy and pointed to different immunologic mechanisms
of regulation of the inflammasome and IL-1 signaling in mice and humans.

IL-36 is another IL-1 family member that when dysregulated leads to autoinflammation. De-
ficiency of the IL-36 receptor antagonist (DITRA), caused by AR variants of IL36RN, leads to
recurrent episodes of pustular psoriasis with associated systemic inflammation and fever (89). IL-
36 cytokines are induced by inflammatory cytokines such as TNF-q, IL-17A, and IL-22, and
published data imply a link between Th17 cytokines and the IL-36 cytokines (90). Loss of the
IL-36 receptor antagonist (IL-36Ra) results in dysregulated IL-36a, IL-368, and IL-36y signal-
ing, and as a consequence, IL-36, IL-8, IL-6, and TNF-a production by keratinocytes increases.
Mice that overexpress IL-1F6, the mouse ortholog to IL-36a, develop cutaneous inflammation
with many features of psoriasis, and if they are bred to have a concurrent IL-F5 (mouse IL-36Ra
ortholog) deficiency, skin abnormalities are enhanced (91). In mice, IL-36 cytokines regulate the
IL-23/1L-17/IL-22 pathway (92). The interplay between the Th17 and IL-36 cytokines and re-
sultant proinflammatory milieu has provided some guidance for therapies for DITRA patients. Bi-
ologic therapies, including TNF-a inhibitors, IL-12/I1.-23 inhibitors, and IL.-17 inhibitors, have
demonstrated benefit; however, biological inhibition with anti-IL-1 therapies has been less suc-
cessful (93).
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While autoinflammatory disorders generally do not have positive autoantibodies, there are sev-
eral diseases with overlapping features. One such disease with a unique underlying etiopathogen-
esis is caused by variants of the COPA gene, which encodes coatomer subunit a of the coat protein
complex I (COPI). This complex is important for membrane trafficking between the endoplasmic
reticulum (ER) and the Golgi apparatus. COPA deficiency is characterized by autoimmune inter-
stitial lung disease, inflammatory arthritis, and immune complex-mediated renal disease (94). The
majority of the patients present in childhood (age <5 years), and many present with pulmonary
hemorrhage. Many patients also have high-titer autoantibodies. The variants were mapped to
the highly conserved WD40 functional domain of the COPA protein. Although COPA protein
expression and localization are normal, the mutant COPA proteins have impaired binding to dily-
sine motifs of proteins destined for retrograde transport from Golgi apparatus to ER. Primary cells
from patients demonstrate increased ER stress markers, increased autophagosome and endolyso-
some size, and impaired autophagy catabolism. Consequently, patients with COPA variants have
an increase in Th17-priming cytokines and CD4" T cells produce increased IL-17 after ex vivo
stimulation with phorbol 12-myristate 13-acetate and ionomycin. These studies nicely demon-
strate how defects in an essential trafficking pathway can lead to inflammation and autoimmunity.

A knock-in mouse model expressing a patient-derived missense variant of Copa developed lung
disease similar to that observed in patients but did not develop inflammatory arthritis or significant
autoantibodies (95). Cytokine-producing, activated T cells were increased, and through a series of
bone marrow chimeras and thymic transplantations the authors of this study demonstrated that
mutant Copa in the thymic epithelium results in a defect in thymic negative selection, thus allow-
ing for the escape of autoreactive T cells. They also detected a reduced frequency of suppressive
Foxp3™ Tregs, and CD4*" T cells were sufficient to cause disease upon transfer into Rag2-deficient
mice. The mechanisms leading to the impaired thymic negative selection remain to be elucidated,
but the authors postulated that since macroautophagy is important to thymocyte selection and
tolerance, a mutant Copa and disrupted macroautophagy may underlie this defect. Together with
data from patients demonstrating autoantibodies and increased Th17 cells, this mouse model sug-
gests that the immunopathology observed in COPA patients is multifactorial and is likely due to
both autoinflammation and autoimmunity.

PRIMARY IMMUNE REGULATORY DISORDERS

In contrast to the PIDs that cause susceptibility to infection or autoinflammation, diseases of im-
mune dysregulation, or PIRDs, lead to a spectrum of clinical symptoms due to defects in the
regulation of the immune response (96, 97). Patients with PIRDs often present with lympho-
proliferation, inflammation, and organ-specific autoimmunity and frequently have susceptibility
to infection and increased risk of malignancy. Management of patients with PIRDs presents a
unique challenge, as careful titration of immunosuppressant medications is often necessary. The
wide spectrum of diseases is evident by the different classification within the immune dysregula-
tion category from the TUIS, ranging from disorders including familial hemophagocytic lympho-
histiocytosis syndromes to very early onset colitis (1). The common feature of these diseases is a
failure to control the immune response, and many of these disorders are due to defects in T cell
tolerance, with classic examples being IPEX and APECED syndromes, as previously discussed.
As with other PIDs, PIRDs caused by heterozygous-dominant genetic variants tend to exhibit
the most phenotypic variability. STAT3 GOF syndrome is caused by germ line single-nucleotide
variants of STAT3, leading to GOF in the encoded protein (98-100) (Figure 4). Common fea-
tures include lymphoproliferation, autoimmune cytopenias, poly-autoimmunity, susceptibility to
infection, and growth failure, but the clinical manifestations are broad and variable. Some of the

Schmitt » Cooper



Annu. Rev. Immunol. 2021.39:227-249. Downloaded from www.annualreviews.org

Access provided by 159.14.230.1 on 07/12/23. For personal use only.

major organ systems affected include the gastrointestinal tract, with enteropathy and hepatitis; the
pulmonary system, with interstitial lung disease; and the endocrine system, with early-onset dia-
betes. A recent systematic review summarized the clinical features and treatments of patients with
this disease, many of whom required significant immunosuppressive therapy (101). Heterozygous
germ line variants in all domains of the STAT3 protein have been documented, though most are
found within the DNA-binding domain, and all lead to increased transcriptional activity. Alter-
ations in baseline and stimulated STAT3 phosphorylation as well as in the kinetics of dephospho-
rylation have been observed with different STAT?3 variants (100, 102, 103). It is uncertain whether
there is a clear genotype-phenotype correlation in this disease, although one study has suggested a
correlation between molecular studies of the STAT?3 signaling cascade and the clinical manifesta-
tions of autoimmunity and lymphoproliferation (103). However, variants with the highest STAT3
activity based on in vitro modeling do not necessarily correlate with a more severe phenotype, and
penetrance of this AD disorder is incomplete. In instances where Tregs were examined, the ma-
jority of patients had reduced Treg levels and multiorgan autoimmunity (101). Indeed, the relative
balance of STAT3 and STAT' activity and skewing of the Treg/Th17 polarization axis, along with
the increased SOCS3 expression and resultant impaired Foxp3* Treg responses, may contribute
to this phenotype (104-106). However, STAT?3 is broadly expressed and certainly other cell types
or signaling pathways may play a role. In addition to functioning downstream of the gp130 fam-
ily of cytokine receptors, STAT?3 is activated downstream of several additional cytokine receptor
families as well as downstream from receptor tyrosine kinases such as epidermal growth factor
receptor (107).

In classical STAT signaling, after a cytokine engages its receptor, one of the four JAK family
members is activated (Figure 4). Subsequently, the JAK phosphorylates the receptor, and STAT
molecules are recruited, phosphorylated, and dimerized prior to translocating to the nucleus to
instruct alterations in gene expression. Despite there being only four JAK family members and
seven STAT family members, cytokines signaling through the JAK/STAT pathway exert a wide
array of cellular effects (108). It is conceivable that human disease impacting an isolated com-
ponent of this pathway can be instructive in these situations. JAK] is activated downstream of
several cytokines that also ultimately engage and activate STAT?3. JAK1 GOF has several overlap-
ping and unique features when compared with STAT3 GOF (109). Overlapping features include
hepatosplenomegaly, thyroid disease, and failure to thrive. By contrast, JAK1 GOF patients had
more severe atopic dermatitis, as well as marked eosinophilia with eosinophilic organ infiltration
and liver cysts. Several experimental models demonstrated increased STAT'1 signaling with JAK1
GOF. Experimental models demonstrated increased basal STAT1 activation and upregulation of
STAT3 following stimulation. Treatment with ruxolitinib (a JAK1/2 inhibitor) improved the clin-
ical manifestations, and in vitro it limited JAK-STAT pathway activation (109).

Both STAT3 and JAK1 have corresponding disorders with LOF, with AD STAT3 LOF causing
susceptibility to infection, elevated IgE, and multiple nonimmunologic manifestations such as
scoliosis and aneurysms (107) (Figure 4). JAK1 LOF is AR and associated with susceptibility to
mycobacterial disease and viral infection (53). Patients with both GOF and LOF variants of these
and other JAK/STAT proteins may help advance understanding of the factors contributing to
signal integration in this signaling system.

Immune dysregulation can also be the presenting sign of other PIDs not strictly classified as
PIRDs. Genetic sequencing of such patients has revealed an expanded spectrum of diseases asso-
ciated with variants of genes that were previously considered responsible for a single disorder. For
example, combined immunodeficiency with associated granulomas and/or autoimmunity (CID-
G/AI) has been described in patients with hypomorphic variants of recombinase-activating genes
1 and 2 (RAG1, RAG?2). Null variants of RAG cause SCID, with absent T and B cells. However, a
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diverse array of clinical and immunological phenotypes has been described in patients with partial
RAG activity, due to T and B cell dysregulation (110, 111). Hypomorphic variants of RAG can
result in variable residual recombinase activity, leading to Omenn syndrome, atypical SCID, and
CID-G/AL In general, the CID-G/AI group has the highest level of residual recombinase activ-
ity, followed by atypical SCID, with Omenn syndrome and SCID patients having very low levels
or null activity. Omenn syndrome generally presents in early childhood with expanded oligo-
clonal autologous T cells that infiltrate organs and cause manifestations including erythroderma,
hepatosplenomegaly, lymphadenopathy, eosinophilia, and high IgE levels. Atypical SCID patients
have low but detectable levels of autologous T cells with reduced function and tend to have more
autoimmunity, in particular autoimmune cytopenias. Patients with both Omenn syndrome and
atypical SCID lack adequate T and B cell responses to pathogens and are highly susceptible to
severe infections requiring stem cell transplantation (112). By contrast, patients with CID-G/AI
less commonly have severe infection but exhibit organ-specific autoimmunity and inflammatory
manifestations and can present later in life. Patients with atypical SCID or CID-G/AI have vari-
able B cell numbers and often have normal IgG, IgA, and IgM levels. The location of the variant
in the protein structure and the type of variant (nonsense, frameshift, splice site, or missense) are
somewhat predictive of phenotypes; however, variability remains. T and B cell repertoire analysis
of patients with hypomorphic RAG variants has demonstrated decreased diversity of T cells, in-
cluding Tregs, and B cells from these patients, which sets the stage for autoimmunity and immune
dysregulation (111, 113).

CLINICAL ASPECTS OF IDENTIFICATION OF MOLECULAR
MECHANISMS OF PRIMARY IMMUNODEFICIENCIES

The ability to uncover genetic determinants of PIDs can have profound implications for patients.
For example, it may lead to a change in diagnosis or targeted therapy, definitive therapy such as
hematopoietic stem cell transplantation (HSCT) or possibly gene therapy, as well as the ability to
provide genetic counseling and data on prognosis for patients and family members. Genetic testing
once relied upon in-depth phenotyping to test for a handful of single gene variants. However, cur-
rent clinical testing standards rely on next-generation sequencing (NGS) and include large panels
(>200) of genes, exome sequencing, and in some cases whole-genome sequencing. Single-gene
testing or chromosomal microarray is reserved for cases with a strong family history, with a very
clear clinical phenotype, or where there is difficulty sequencing the particular gene by NGS (e.g.,
the most common 2-bp deletion in NCFI causing chronic granulomatous disease is not detected
by NGS) (114). While relatively straightforward for known disorders, the discovery of novel ge-
netic causes of disease or the substantial expansion of a clinical phenotype depends upon proving
pathogenicity of identified genetic variants by demonstrating altered function of the encoded pro-
tein in a relevant model system (115, 116). The methods used for variant annotation, filtering, and
prioritization are diverse, and many annotation sources can be applied. Manual inspection of the
curated prioritized variant list is time-consuming, and it is necessary to have some understanding
of the patient’s clinical phenotype. Uncovering genetic mechanisms of disease and the specific in-
flammatory pathways involved in disease pathogenesis has been instrumental in guiding therapy
for numerous PIDs.

The importance of identifying an underlying genetic cause of disease and functional studies
of the immune response of such patients is underscored by the ability to now successfully manage
a number of PIDs with off-label use of targeted therapies. For example, abatacept [cytotoxic T
lymphocyte antigen 4 (CTLA-4) IgG fusion protein] has been used to treat patients with CTLA-4
haploinsufficiency and LPS-responsive beige-like anchor (LRBA) deficiency, a disorder leading
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to altered transport of CTLA-4 to the cell surface. Patients with CTLA-4 haploinsufficiency and
LRBA deficiency exhibit humoral defects and autoimmunity, in particular interstitial lung disease
and enteropathy (117-120). Treatment of both disorders with abatacept has been reported suc-
cessful (118, 121, 122). Other examples include canakinumab (antihuman IL-1 IgG monoclonal
antibody) for DIRA and jakinibs for STAT3 and STAT1 GOF and interferonopathies (123).
HSCT has the potential to provide long-term treatment for many PIDs, and as genetic discovery
of PIDs continues, the range of PIDs treated with HSCT continues to expand (124). Additional
studies in model organisms will also likely be important to delineate whether replacement of the
hematopoietic compartment has the potential to treat disorders in which the altered gene is more
ubiquitously expressed (for example, JAK/STAT disorders).

In some cases, a genetic diagnosis can lead to the use of HSCT for diseases not previ-
ously thought to be amenable to such treatment. Very early-onset inflammatory bowel disease
(VEOIBD), defined as inflammatory bowel disease (IBD) diagnosed before six years of age, ac-
counts for ~15% of pediatric patients with IBD. Most cases of IBD are likely polygenic, with
patients having a genetic susceptibility and the right combination of environmental and host fac-
tors. Nevertheless, at least 50 genetic disorders have been noted to cause IBD-like pathology,
many of which are classified as PIDs (125, 126). AR LOF variants of IL10 and IL10RA or IL10RB
cause VEOIBD that occurs within the first few months of life and is characterized by severe en-
terocolitis with perianal and penetrating fistulas and abscesses (127, 128). Patients may also suffer
from chronic folliculitis, arthritis, and infections. Conventional therapies are largely unsuccessful.
HSCT has been used as treatment and can successfully induce sustained remission (129). Other
PIDs with IBD appearing as a hallmark feature at a young age, and that may be amenable to HSCT,
include IPEX syndrome, X-linked lymphoproliferative disease type 2, CGD, and Wiskott-Aldrich
syndrome. Early genetic diagnosis in patients with VEOIBD has the potential to change manage-
ment and outcomes in these patients.

THE FUTURE OF GENETICS IN PEDIATRIC IMMUNE DISEASE

Investigation and discovery of the genetic causes of PIDs over the last four decades have yielded
invaluable insights into human immunity. Because patients with immune-mediated disease were
studied, we now understand how developing T cells in the thymus are exposed to tissue-specific
antigens, the role of the interferon response in human infection, and the importance of tight
regulation of the immune response for preventing autoinflammation and immune dysregulation,
to name just a few points. Moving forward, there are several important issues concerning genetic
identification of pediatric immune disease that will be essential to address for disease discovery.
First, new approaches to genetic discovery beyond current strategies for exome and genome
sequencing are required. A large study from Stray-Pedersen etal. (130) evaluated 278 families with
suspected PID. Using a combination of exome and targeted microarray, they achieved a genetic
diagnosis in ~40% of unrelated probands. These genetic findings changed diagnoses and treat-
ments in many cases. However, ~60% of patients were well-phenotyped and thought likely to
have monogenic disease but still could not be diagnosed. The finding of a genetic cause of disease
in ~40% of patients is consistent with exome sequencing of other cohorts of nonconsanguineous
patients such as children with intellectual disability (131), suggesting that this challenge is not
limited to PID patients. This study also highlighted the importance of structural variants, which
were identified in ~10% of patients, largely by targeted microarray and not exome sequencing.
Enhanced approaches to identify such structural variation will be important for the discovery of
novel genes. Somatic genetic variation and mosaicism are also likely more relevant to PIDs than
previously recognized (42), and sequence coverage with exome and genome sequencing is likely
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to miss many of these disease-causing variants if a minority of cells harbor the variant. For ex-
ample, patients with somatic ALPS harbor pathogenic FAS variants in most double-negative T
cells (DN'I5), but due to mutation events in hematopoietic precursors that confer a survival ad-
vantage to DN'T3, the variant is present in a relatively small proportion of other immune cells
(39). In the case of somatic ALPS, DNT5 are purified prior to sequencing. However, this presents
a challenge for genetic testing if the target population harboring the mutation is unknown, and
for disease caused by low-frequency alleles in multiple cell types. It is also possible that what looks
like a monogenic disease is actually the result of multiple interacting genetic factors, including
the combination of common susceptibility variants and deleterious monogenic variants, as re-
cently demonstrated with genome sequencing in a cohort of 1,318 patients with sporadic PID
(38). Finally, variants in noncoding regulatory regions and other mechanisms of genetic variation
such as epigenetic changes may also account for the 60% of patients who remain undiagnosed.

Next, as we identify potentially disease-causing genetic variants, methods to rapidly perform
functional screens will greatly aid in determining whether an identified variant alters the func-
tion of the encoded protein. Even for variants of genes known to cause disease, it can be difficult
to know whether a new variant is disease causing, particularly if only a handful of patients have
been described or there is phenotypic heterogeneity. This has become especially challenging for
the physician receiving clinical genetic sequencing reports with variants of uncertain significance
(114). This also brings up the challenge of demonstrating the pathogenicity of a variant discov-
ered in a single patient. These findings should not be overlooked, however, as many fundamental
discoveries have been made starting with a single patient, adhering to Casanova etal.’s (116) guide-
lines for demonstration of pathogenicity in such settings.

Finally, we should look beyond mice as model organisms for investigation of new genetic vari-
ants in patients. While useful for disease modeling and treatment studies, such models can be
time-consuming and may not be the most efficient means to determine whether an identified
genetic variant is disease causing. Alternative model systems may have the potential to demon-
strate pathogenicity of genetic variants. For example, studies in zebrafish were used to demonstrate
pathogenicity of CECRI variants in DADA?2 (76) and interrogate defects in neutrophil trafficking
due to defects in RAC? found in patients (132). In vitro systems such as organoids also hold the
potential to more rapidly validate a genetic variant in a relevant system. Additionally, a 3D culture
system for T cell differentiation was recently demonstrated to be useful for differentiating T cell
intrinsic versus extrinsic defects in patients with severe T cell deficiency (133).

This summary of the future of genetics of pediatric immune disease is not all-encompassing,
but it demonstrates the exciting opportunities in the field. We have an unprecedented capacity for
genomic testing of patients, and we still have a great deal to learn from children with rare immune
diseases. Moving forward, continued collaborations between clinicians and immunologists will be
essential to advance this field, make new discoveries about the human immune response, and offer
our patients enhanced diagnostics and treatment.

1. Primary immunodeficiency diseases (PIDs) present with a wide range of clinical and
immunologic phenotypes.

2. Genetic causes of PIDs include Mendelian inheritance of genetic variants as well as so-
matic mosaicism.
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. Identification of monogenic genetic defects of the human immune system has revealed

unexpected roles for the encoded proteins that could not always be predicted from model
organisms.

. Following identification of a disease-causing genetic variant, questions remain regarding

the best approach to treating patients, with options including targeted biologic therapies,
hematopoietic stem cell transplantation, gene therapy, and personalized small molecules.

. Many patients with apparent monogenic immune diseases remain undiagnosed, and ad-

ditional methods to identify genetic mechanisms of disease are needed.

. The rapid evolution of genetic testing of patients with immune system disorders has left

a gap in the ability to functionally validate genetic variants.

. Model systems are needed to quickly and efficiently test the immunologic consequences

of novel genetic variants, in order to advance our understanding of the human immune
response.
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